일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 딥러닝 스터디
- 골빈해커
- 해리스 코너 검출
- 딥러닝 공부
- 김성훈 교수님 PyTorch
- tensorflow 예제
- 모두의 딥러닝 예제
- c언어 정리
- 컴퓨터 비전
- 케라스 정리
- 팀프로젝트
- 가우시안 필터링
- C언어 공부
- matlab 영상처리
- 모두의 딥러닝
- Pytorch Lecture
- 미디언 필터링
- c++
- 파이토치 강의 정리
- pytorch
- c++공부
- 파이토치 김성훈 교수님 강의 정리
- 딥러닝
- object detection
- 영상처리
- 파이토치
- MFC 프로그래밍
- pytorch zero to all
- c언어
- TensorFlow
- Today
- Total
목록DeepLearning (47)
ComputerVision Jack
[개념 정리] 비지도 학습 AutoEncoder 입력값으로부터 데이터의 특징을 찾아내는 방법 비지도 학습은 X값만 있는 상황에서 학습한다. (대표적으로 Auto Encoder가 있다.) 오토인코더(AutoEncoder) 입력값과 출력값을 같게 하는 신경망. 가운대 계층의 노드 수가 입력값 보다 적은 것이 특이사항. 따라서 데이터 압축 효과와 잡음제거 효과까지 적용 가능하다. 입력층으로 데이터가 들어오면 인코더를 통해 은닉층으로 보내고, 은닉층 데이터를 디코더를 통해 출력층으로 보낸 뒤, 출력과 입력이 비슷해지도록 가중치를 찾아내는 것. 오토 인코더(Variational AutoEncoder) 잡음 제거 인코더(Denoising AutoEncoder) [코드 정리] from tensorflow.exampl..
[07-1 learning_rate and evalutation] learning rate 중요성 learning_rate을 바꿔 가면서 다양하게 실험해본다. x_data = [[1, 2, 1], [1, 3, 2], [1, 3, 4], [1, 5, 5], [1, 7, 5], [1, 2, 5], [1, 6, 6], [1, 7, 7]] y_data = [[0, 0, 1], [0, 0, 1], [0, 0, 1], [0, 1, 0], [0, 1, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0]] #x와 y 데이터 준비, 데이터 shape을 보면 다분류기라는 것을 알 수 있다. x_test = [[2, 1, 1], [3, 1, 2], [3, 3, 4]] y_test = [[0, 0, 1], [0,..
[개념 정리] 이미지 인식의 CNN CNN은 합성곱 신경망이다. 이러한 CNN은 이미지 인식 분야와 자연어 처리, 음성인식에도 효과가 대단하다. CNN 개념 CNN의 모델은 기본적으로 컨볼루션 계층과 풀링 계층으로 구성된다. N차원의 데이터의 지정한 영역의 값들을 하나의 값으로 압축한다고 여기면 된다. 즉 마스크(윈도우)를 통하여 이미지의 특정 영역을 가져와 은닉층을 구성된다. 따라서 윈도우의 크기가 (3 x 3)이면 가중치 또한 (3 x 3)이 필요하며, 편향은 1개가 필요하다. 이를 커널 또는 필터라고 한다. stride(스트라이드) stride는 윈도우가 이동될 크기를 말합니다. 이미지는 보통 픽셀로 구성되어 있다. 따라서 stride가 1인경우 한픽셀씩 옆으로 마스크가 이동하면서 영역을 가져오지만..
[06-1 softmax_classifier] 다분류기 모델 저번 모델은 이진 분류기를 사용하였다면 이번엔 다분류기를 사용하며 특성에 알맞게 다 클래스로 분류하는 과정이다. x_data = [[1, 2, 1, 1], [2, 1, 3, 2], [3, 1, 3, 4], [4, 1, 5, 5], [1, 7, 5, 5], [1, 2, 5, 6], [1, 6, 6, 6], [1, 7, 7, 7]] y_data = [[0, 0, 1], [0, 0, 1], [0, 0, 1], [0, 1, 0], [0, 1, 0], [0, 1, 0], [1, 0, 0], [1, 0 ,0]] #x_data는 저번과 거의 비슷하지만 y_data가 조금은 다르다. 분류 결과를 통하여 도출 할 수 있는 그룹군은 총 3개이다. 그리고 각 클래..
[개념 정리] Mnist 데이터를 이용한 신경망 학습 우선 데이터를 분석한다. mnist의 데이터는 28 * 28 사이즈의 이미지로 되어있다. X = tf.placeholder(tf.float32, [None, 784]) Y = tf.placeholder(tf.float32, shape = [None, 10]) #우리는 이미지를 통으로 집어 넣기 때문에 feature 사이즈는 28 * 28 = 784이다. 그리고 label은 (0 ~ 9) 까지 이기 때문에 10으로 설정한다. 미니 배치 : 데이터를 적당한 크기로 잘라서 학습시키는 것 배치 사이즈를 설정하고 데이터가 한바퀴 다 돌아야 1epochs 라고 한다. W1 = tf.Variable(tf.random_normal([784, 256], stddev ..
[05-1 Logistic_Regression] logistic_regresssion은 이진 분류기를 뜻한다. binary classificaiton x_data = [[1, 2], [2, 3], [3, 1], [4, 3], [5, 3], [6, 2]] y_data = [[0], [0], [0], [1], [1], [1]] #x_data 한 묶음이 y_data 하나와 매칭이 된다. 전의 데이터는 회귀 예측이기 때문에 라벨이 1 0이 아닌 특정한 value로 되어 있었다. X = tf.placeholder(tf.float32, shape=[None, 2]) Y = tf.placeholder(tf.float32, shape=[None, 1]) #마찬가지로 x_data와 y_data(라벨)의 shape에 맞게..
케라스 신경망 구조 실행환경 : colab 케라스 신경망 훈련 요소 네트워크(모델) 구성 층 입력 데이터와 대응하는 라벨 cost함수 optimizer(최적화) model.add(layers.Dense(32, input_shape = (784, ))) model.add(layers.Dense(10)) # 모델에 추가된 층을 자동으로 상취 층의 크기에 맞춰진다. 출력층의 크기를 자동으로 채택 이런 네트워크 구조는 다양하게 존재한다.(가지 네트워크, 출력 여러개 네트워크, 인셉션 블록) 따라서 적절한 네트워크 구조를 채택해야한다. 네트워크를 정하면 손실 함수와 옵티마이저를 선택한다. 다출력 신경망은 여러개의 손실함수를 갖는다. 그러나 경사 하강법은 scalar의 손실 기준값으로 하기 때문에 여러 네트워크 손..
[개념 정리] chapter4의 예제 포유류 조류 파일을 csv로 저장한 후 작업 환경에서 읽어온다. data = np.loadtxt('./data.csv', delimiter = ',', unpack = True, dtype = 'float32') #loadtxt의 unpack 매개변수 : 한 열을 쭉 읽어와 행으로 변환 #loadtxt의 transpose 매개변수 : 전치 행렬을 제작 은닉망을 늘릴땐, 전층의 은닉층 개수를 물려받아 사용하며 최정 출력 은닉망은 결과로 분류될 클래스 개수로 정의한다. #주의할 점 신경망의 계층 수와 은닉층 뉴런수를 늘리면 복잡도가 높은 문제를 해결하는데 도움을 준다. 그러나 많이 늘릴 수록 과적합 문제에 빠질 수 있다. global_step 생성이유 : 학습 마다 과정..