일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- Pytorch Lecture
- 미디언 필터링
- 모두의 딥러닝 예제
- 파이토치 강의 정리
- C언어 공부
- TensorFlow
- 파이토치
- c언어 정리
- 모두의 딥러닝
- 골빈해커
- 파이토치 김성훈 교수님 강의 정리
- object detection
- 해리스 코너 검출
- pytorch
- c++
- 딥러닝 공부
- 컴퓨터 비전
- 영상처리
- 김성훈 교수님 PyTorch
- c언어
- c++공부
- 팀프로젝트
- 가우시안 필터링
- 케라스 정리
- pytorch zero to all
- 딥러닝 스터디
- 딥러닝
- matlab 영상처리
- tensorflow 예제
- MFC 프로그래밍
Archives
- Today
- Total
목록CetnerNet 사용 (1)
ComputerVision Jack
Objects at Points
Objects at Points Abstract 대부분의 성능 좋은 object detectors는 가능성 있는 방대한 object location 리스트를 열거하고 각각을 분류한다. 이러한 방법은 낭비이며, 비효율적이고 추가적인 post-processing 필요로 한다. 논문에선 다른 접근 방법을 취한다. 객체를 single point 추론할 수 있게 모델을 설계한다. 해당 detector는 center point 찾기 위해 keypoint-estimation 진행하고, 서로 다른 모든 object properies에 대해 regression 진행한다. center point 기반의 접근 방법인 CenterNet은 end-to-end 구별이 가능하며 bounding box 기반인 detector 보다 ..
Reading Paper/Object Detection
2022. 4. 14. 12:29