일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 |
- c++공부
- object detection
- 딥러닝
- 미디언 필터링
- c언어 정리
- 가우시안 필터링
- matlab 영상처리
- 케라스 정리
- 팀프로젝트
- c언어
- 골빈해커
- 파이토치 강의 정리
- c++
- tensorflow 예제
- 파이토치 김성훈 교수님 강의 정리
- 파이토치
- MFC 프로그래밍
- pytorch zero to all
- 김성훈 교수님 PyTorch
- 영상처리
- C언어 공부
- 해리스 코너 검출
- 딥러닝 스터디
- 컴퓨터 비전
- 모두의 딥러닝
- 딥러닝 공부
- 모두의 딥러닝 예제
- TensorFlow
- Pytorch Lecture
- pytorch
- Today
- Total
목록케라스 정리 (3)
ComputerVision Jack

순환 신경망(Recurrent neural network) 시계열 또는 시퀀스 데이터를 처리하는 기본적인 딥러닝 모델 =1D 컨브넷으로 사용하기도 한다. 텍스트 데이터 다루기 텍스트 : 가장 흔한 시퀀스 형태의 데이터 순환 신경망 모델은 문자 언어에 대한 통계적 구조를 만들어 간단한 텍스트 문제를 해결한다. 자연어 처리(natural language processing)를 위한 딥러닝 모델은 단어, 문장, 문단에 적용한 패턴 인식이다. 텍스트 벡터화(vectorizing text) 텍스트를 수치형 텐서로 변환하는 과정 텍스트를 단어로 나누고 각 단어를 하나의 벡터로 변환한다. 텍스트를 문자로 나누고 각 문자를 하나의 벡터로 변환한다. 텍스트에서 단어나 문자의 n-그램(윈도우 사이즈)을 추출하여 하나의 벡..

케라스 신경망 구조 실행환경 : colab 케라스 신경망 훈련 요소 네트워크(모델) 구성 층 입력 데이터와 대응하는 라벨 cost함수 optimizer(최적화) model.add(layers.Dense(32, input_shape = (784, ))) model.add(layers.Dense(10)) # 모델에 추가된 층을 자동으로 상취 층의 크기에 맞춰진다. 출력층의 크기를 자동으로 채택 이런 네트워크 구조는 다양하게 존재한다.(가지 네트워크, 출력 여러개 네트워크, 인셉션 블록) 따라서 적절한 네트워크 구조를 채택해야한다. 네트워크를 정하면 손실 함수와 옵티마이저를 선택한다. 다출력 신경망은 여러개의 손실함수를 갖는다. 그러나 경사 하강법은 scalar의 손실 기준값으로 하기 때문에 여러 네트워크 손..
인공지능 보통의 사람이 수행하는 지능적인 작업을 자동화 하기위한 연구 활동 머신러닝(기계학습)과 딥러닝을 포괄하는 상위 개념. 과거 : rule base 현재 : dataset base - 머신러닝 과거에는 규칙에 따라 처리될 데이터를 입력하여 해답을 도출했다. 하지만 현재는 데이터를 입력하여 컴퓨터가 스스로 규칙을 찾아내서 새로운 데이터를 입력하면 기대되는 해답을 출력한다. training(훈련)과정. 머신러닝과 딥러닝의 핵심은 의미있는 데이터로의 변환이다. (데이터의 전처리가 중요하다.) 학습 : 더 나은 표현을 찾는 자동화된 과정 딥러닝 딥러닝은 머신러닝의 한 분야로 연속된 층(layer)에서 점진적으로 의미있는 표현을 배우는 강점이 존재하며, 데이터로 부터 표현을 학습하는 새로운 방법. 연속된 층..