일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 가우시안 필터링
- C언어 공부
- c언어
- pytorch zero to all
- c언어 정리
- matlab 영상처리
- MFC 프로그래밍
- tensorflow 예제
- c++
- c++공부
- 케라스 정리
- 파이토치 강의 정리
- 김성훈 교수님 PyTorch
- 미디언 필터링
- 파이토치
- 영상처리
- object detection
- 딥러닝
- 팀프로젝트
- 딥러닝 공부
- 파이토치 김성훈 교수님 강의 정리
- TensorFlow
- 골빈해커
- 모두의 딥러닝
- 딥러닝 스터디
- 컴퓨터 비전
- 모두의 딥러닝 예제
- pytorch
- 해리스 코너 검출
- Pytorch Lecture
- Today
- Total
목록골빈해커 예제 (2)
ComputerVision Jack
[개념 정리] Gan(Generative Adversarial Netwrok) 오토 인코더와 같이 결과물을 생성하는 모델, 서로 대립하는 두 신경망을 경쟁시켜 결과물 생성 구분자(Discriminator) 실제 이미지를 구분자에게 이미지가 진짜임을 판단하게 한다. 생성자(Generator) 생성자를 통하여 노이즈로 부터 임의의 이미지를 만들고 구분자를 통해 진짜 이미지인지 판단하게 한다. 생성자는 구분자를 속여 진짜처럼 보이게 하고, 구분자는 생성자 이미지를 최대한 가짜라고 구분하기. 경쟁을 통해 생성자는 실제 이미지와 비슷하게 이미지를 생성한다. mnist를 이용하여 원하는 숫자에 해당하는 이미지 모델을 gan으로 구현 [코드정리] total_epoch = 100 batch_size = 100 lear..
[개념 정리] 이미지 인식의 CNN CNN은 합성곱 신경망이다. 이러한 CNN은 이미지 인식 분야와 자연어 처리, 음성인식에도 효과가 대단하다. CNN 개념 CNN의 모델은 기본적으로 컨볼루션 계층과 풀링 계층으로 구성된다. N차원의 데이터의 지정한 영역의 값들을 하나의 값으로 압축한다고 여기면 된다. 즉 마스크(윈도우)를 통하여 이미지의 특정 영역을 가져와 은닉층을 구성된다. 따라서 윈도우의 크기가 (3 x 3)이면 가중치 또한 (3 x 3)이 필요하며, 편향은 1개가 필요하다. 이를 커널 또는 필터라고 한다. stride(스트라이드) stride는 윈도우가 이동될 크기를 말합니다. 이미지는 보통 픽셀로 구성되어 있다. 따라서 stride가 1인경우 한픽셀씩 옆으로 마스크가 이동하면서 영역을 가져오지만..