일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- pytorch
- 딥러닝 공부
- TensorFlow
- c++공부
- object detection
- pytorch zero to all
- 모두의 딥러닝 예제
- 김성훈 교수님 PyTorch
- 딥러닝
- c++
- 골빈해커
- 파이토치 강의 정리
- tensorflow 예제
- 가우시안 필터링
- matlab 영상처리
- c언어 정리
- C언어 공부
- 미디언 필터링
- Pytorch Lecture
- MFC 프로그래밍
- 파이토치 김성훈 교수님 강의 정리
- 모두의 딥러닝
- 영상처리
- 해리스 코너 검출
- 딥러닝 스터디
- 팀프로젝트
- c언어
- 컴퓨터 비전
- 케라스 정리
- 파이토치
- Today
- Total
목록DeepLearning Study (10)
ComputerVision Jack
저번 스터디에선 dataProcess 과정을 거쳐 새롭게 바뀐 csv 파일을 추출하였는데. data = df.values 과정을 통해서 데이터 프레임을 numpy array로 바꿀 수 있어서 따로 Process과정을 제외하고 바로 처리하였습니다. [Simple Logistic Dataset] 다음 SimpleDataset은 Purchased 예측하는 데이터셋입니다. UserId와 를 drop() 메소드를 이용하여 제외하고 Gender를 0과 1 이진으로 바꿔준 후에 구현하였습니다. [Heart Disease Dataset] 다음 데이터는 TenYearCHD를 예측하는 데이터셋입니다. 데이터 중간에 N/A 값이 발생하여 fillna() 메소드를 사용하여 공백값을 처리했습니다. df = df.fillna(d..
김성훈 교수님의 모두의 딥러닝 수업을 듣고 kaggle에서 데이터를 찾아 직접 tensorflow로 구현하고 싶어 스터디를 만들고 스터디 사람들과 함께 예제를 하나씩 해보기로 했습니다. [LinearRegression Dataset] 우선 가장 기본적인 데이터 셋을 찾아서 모델링으로 구현을 해봤습니다. [Insurance Dataset] 위 데이터의 경우 bmi를 예측하는 예제이다. 따라서 ['sex', 'smoker', 'region']을 수치 데이터로 변경하는 작업이 필요하다. def change_sex(column): if column == 'female': return 0 else: return 1 apply메소드에 적용할 함수를 설정한다. df['sex'] = df['sex'].apply(cha..